

German Engineering, Local manufacturing *

Heat Transfer Plate Technologies in Bioethanol Plants <u>Built to last</u> (Sugar, Refinery, Distilleries & Fertilizer) <u>Save Energy and Water</u>

VIRENDRA JHAMB

Clean Earth Energy Solutions India Pvt Ltd

An outstanding mission and courage from Govt of India to achieve the Environmental goals through massive Bioethanol plants BUT!

MITIGATE THE PROBLEMS IN PROCESS LINES AND ENJOY THE PROFITABLE VALUE CHAIN

- Security of the availability of the grain. (govt should promise). GMC with 30% less carbon content compared to gasoline. Regulatory issues can be addressed through scientific & Management solution and not public disoriented approach. USA has removed the obstacles in using GMC (Sept 24 onwards); USA is aiming to export bioethanol to world as they have more arable land. They can.
- More than 50% of plants are consuming more than specified steam consumption at rated capacity of the bioethanol plant. Fluctuations are beyond 10%. Owners must control it. CEES can help you. Already proven at Triveni, Radico, Ankur Biochem, CDBL (all plants) and now PAPL underway. Energy cost is almost 30% of the total production cost. Price of the grain is not the only matter.
- Water utilization can be planned to be < 2.5 liters per liter production of ethanol. Which in the cases of the corn slurry-based plants is jumping to 4.2 ~4.5 liters. (at Renuka 2 plants of 350 KLPD; it is 1.8 liters (VSI) [CEES has demonstrated the same and payback period was less than 9 months]

Bioethanol - Save Energy & Water

1/29/2025

4

WHO's WHO OF ETHANOL MARKET ARE OUR ESTEEMED CUSTOMERS

proj	PCO ENGINEERS PVT. LTD. ainable Engineering Solutions MÖJJ ENGINEERING SYSTEMS LTD.	SSEPL engineering solutions		ISGEC
AVANT-GARDE SYSTEMS AND CONTROLS (P) LTD	Crossing the boundaries	een Triveni	% S	GULSHAN POLYOLS LIMITED
Radico SPIRIT OF EXCELLENCE	with pursuit of excenence	lmar	Athani, Munoli, Havelga, Mundra NESTWELL BIOREFINERIES	Globus Spirits
ASSOCIATED	DBL, Haryana, BDBL, Alcograin	IA GLYCOLS LIMITED	Pionee	r Industries Pvt. Ltd
Dalmia Bharat Sugar	CIN-U24119MH2010PTC288920	ANKUR BIOCHEM P	HEM VT. LTD.	GREAT GALLEO VENTURES LTD

Grounded

GRAIN TO ETHANOL- STEP1

11 mm gap is fine for rice slurry but for Corn slurry fibres 14mm gaps are must and specifications are still mentioning 11mm. Share the experiences Radico Khaitan , Ankur Biochem, CDBL (All plants owners , Unit Heads can share their experience with comparison

demonstrated in these plant sites. PAPL is facing several problems on 11mm gap PHEs and they are now installing the CEES 14 mm PHE having seen the improved performances at said plants.

1/29/2025

400 KLPD means 160 m3/Hr cooking of grain slurry means around 12 T/hr steam

Bioethanol - Save Energy & Water

WIDE GAP PLATES ARE ARRANGED IN THE PHE.

Bioethanol - Save Energy & Water

1/29/2025

CEES FREE FLOW WIDEST PHE MAKES THE DIFFERENCE

ULTIMATELY HIGHER PRODUCTIVITY & LESSER STEAM UTILIZATION.

GRAIN TO ETHANOL-FULL PROCESS LINE IN SUMMARY-STEP 2

The bioethanol production process involves several steps, & CEES's products play a crucial role in optimising efficiency & water management.

Specify the vapor possibility at 127 C (1.31 barg instead of live steam at 3.32 barg. A huge saving is being achieved by Renuka plants. Please share with Renuka Manoli and Athani plants.

CEES	Hybrid	Reboiler
------	--------	----------

~	Model	Width MM	Length S MM	Length M MM	Length L MM
1	CH5	500	777	993	1209
	CH9	900	945	1800	2700

connection sizes possible from 50NB to 1500 NB

CEES Air cooled Alcohol

vapor condenser

Bioethanol - Save Energy

Distillation column

CEES HYBRID REBOILER/ FFE/CONDENSER FULLY OPENABLE

TUBE SIDE : TUBE STRUCTURE OF 10MM DIA PLATE SIDE : CORRUGATED PLATE CONSTRUCTION OF 5MM GAP

REBOILERS WITH CEES HYBRID PLATES ON DISTILLATION COLUMNS : INSIST ON 127 C VAPOR TO BE USED INSTEAD OF THE OLD CONCEPT OF LIVE STEAM OF 145 C.

AN EXAMPLE ON THE REBOILER (RC COLUMN) ADVANTAGE THROUGH HYBRID OVER S&T (SAME OR LOWER CAPEX WHILE OPEX TOO IS REDUCED SO SIGNIFICANTLY)

<u>S&T</u>				Hybrid CEES					
	Spent Lees	Units	Steam			Sp	oent Lees	Units	Steam
Flow rate	295078	295078Kgs/Hr)	Flow rate		295078Kgs/Hr		29299.74
Inlet temp	125.5	125.5°C		:	Inlet temp		125.5°C		130*
Outlet temp	125.4	125.4°C		7	Outlet temp		125.4°C		130
Heat load	15214740	15214740Kcal /Hr			Heat load		15214740Kcal /Hr		15214740
НТА	1100	1100m2			НТА		750)m2	
Pressure drop	50	50Кра			Pressure drop		50) КРа	9.80
* 4.34 bar					* 2.68 bar				

<u>Compansion o</u>	<u>i Fuwei Ge</u>	<u>illeration a</u>	at Differen	L Dack-pro	<u>essures</u>
Basis Ste	am turbine op	erating with	different bac	ck pressures	5
Steam parameters			_		
Inlet				Outl	let
			Case 1		Case 2
Flow (Q)	70,000.00	kgs/hr	70,000.00	kgs/hr	70,000.00
Pressure	65.30	kg/cm2 a	5.39	kg/cm2 a	2.90
	64.04	bar a	5.29	bar a	2.84
Temp	480.00	deg C	202.80	deg C	137.00
Enthalpy(h1)	3,370.10	kj/kg	2,860.43	kj/kg	2,734.21
	804.93	kcal/kg	683.20	kcal/kg	653.05
Turbine eff	0.98				
Generator eff	0.98				
Power generation in Kwh	= Q*(H1-H2)	/859.85			
Theoritical Dewar generation	Kwh	9910		12365	
Theoritical Power generation	Mwh	9.91		12.30	
Actual Power generation	Mwh	9.52		11.87	
Additional power generation	Mwh			2.30	
		Extra gain			
Elctricity Cost			Rs/kwh		5.00
Amount for 300 days (in IN	IR)	300	davs		8.48.60.312.03

Comparision of Power Generation at Different Back-pressures

SAVINGS CALCULATION FOR GBL IS ATTACHED IN THE TABLE.

Bioethanol - Save Energy & Water

1/29/2025

GRAIN TO ETHANOL-FULL PROCESS LINE IN SUMMARY-STEP 3

The bioethanol production process involves several steps, & CEES's products play a crucial role in optimising efficiency & water management.

CEES

Proven at various Ethanol plants and Refineries. Share the experiences with Mr. Ramesh ji at Renuka for many plants at Renuka and Wilmar, Indonesia Mr. Asif Iqbal at Asif Iqbal and Mr. Awasthi at Diftech.

AIR COOLER ALCOHOL - 2*350 KLPD RENUKA, MUNOLI ETHANOL PLANT

Distillation Section						
CEES DESIGN DETAILS	HE-411 A/B Analyser Column Condenser	HE-401 A/B Degasser Column Condenser	HE-420A/B RC Column Condenser	HE-430 Recovery Column Condenser	HE-505 A/B Molecular Sieve Condenser	Air cooled Surface Condenser
Medium (vapours)	50% Alcohol + 50% Water	50% Alcohol + 50% Water	95.5% Alcohol + 4.5% Water	94% Alcohol + 6% Water	99.8% Alcohol + 0.2% Water	Water Vapor
Inlet Flow Rate Kg/hr(hot side)	4000	2000	15000	12000	15000	30000
Inlet Temp. °C (Hot side)	71.13	68.39	103.13	81.16	76.12	54.91
Outlet Temp. °C (Hot side)	61.51	58.82	103.13	81.15	76.12	54.91
Pressure, Bar(A)	0.45	0.40	2.50	1.15	0.95	0.16
Heat Load, kcal/hr (3,63,30,000) Distillation Section	15,55,000	7,80,000	30,14,000	26,11,000	29,90,000	1,70,41,000
Ambient Air Inlet °C (Max)	42	42	42	42	42	42
MOC of Tube - Welded Type	SS304	SS304	SS304	SS304	SS304	SS304
MOC of Fins	Aluminium	Aluminium	Aluminium	Aluminium	Aluminium	Aluminium
Max/yearly Average power installed/ utilized (518 KW/300 KW)	21.32	11.01	21.04	21.32	29.01	331.41
Motor type	IE3/ Flame proof	IE3/ Flame proof	IE3/ Flame proof	IE3/ Flame proof	IE3/ Flame proof	IE3/Non-Flame proof
Fan blade material	PAG	PAG	PAG	PAG	PAG	PAG
Sound level	85 +-3 dB	85 +-3 dB	85 +-3 dB	85 +-3 dB	85 +-3 dB	85 +-3 dB
Layout	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal	Horizontal
Overall Dimensions	7000 (L) x 7000 (W) x 2200 (H)	7000 (L) x 3500 (W) x 2200 (H)	7000 (L) x 7000 (W) x 2200 (H)	7000 (L) x 7000 (W) x 2200 (H)	7000 (L) x 10500 (W) x 2200 (H)	50000 (L) x 20000 (W) x 2200 (H)

= 3,63,30,000

= 8

1/29/2025

AIR COOLED ALCOHOL CONDENSER - 400 KL ETHANOL

= 250

OPEX COMPARISON

- A: Freedom from water woes and associated Savings
- 1. Total heat Load of all 10 ACC in Kcal/hr
- 2. Max temperature differential for wet cooling tower °C
- 3. Hence flow rate of the pump :
- 4. Pump KW @ total head of 50 meter
- 5. Cooling tower Fan power

) = 4500 m3/Hr. = 700 KW/hr

KW/hr

- **B**: Power Consumption Average of ACC –Avg yearly consumption = 300 KW/Hr
- C: So savings on Electrical consumption would be : 650*315*24*5.00: Approx. 2.45 crores/ Annum
- D: Chemical Cost of Water treatment + Evaporation loss : 7 crores per Annum
- E: Down time cost due to cleaning requirements of the system due to scaling /Deposition : EXTRA

CAPEX COMPARISION

ACC will cost around : 11.5 Crores. CTW with pumps for 4500 m3/Hr (including Civil costs) : 5.0 crores Savings per year : around 9.45 crores

AT RENUKA.. SEE THE SAME.. WORKING SINCE LAST 3 YRS.

CONTACT DETAILS : LET US COMPLETE AND EXTEND

Share the opinion with	Designation			
Mr. M. Prakash	Director Operation at Radico (earlier Triveni)			
Mr. Mahendra Sharma	CMD at Ankur Biochem			
Mr. Ramesh Saheb	Director Process at Renuka			
Mr. Vikas Gupta	MD at PAPL			

Thus CEES is joining the dots from fertilizer to Farmers to process plants and offering you the benefits with a promise of longer operations. And earning extra profit margins.

www.ceesindia.com